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Abstract 

 

A scaling form for the refractive index n is investigated in the work. It based on the scaling 

theory (ST) and experimental data on nl,ng,T – data Yata [1,2] along the coexistence curve (CC) 

including a wide region around the critical point of HFC 134a and HFC 143a. A methodical part 

deals with an equation nl,g (T ) that is a combination of two properties, the order parameter fs and 

the diameter of CC fd . It is accepted that the properties, Y = (fs,fd,), have a scaling part, Yscal, and 

a regular one, Yr. The form of Yscal has followed to the scaling theory (ST), depended on the 

relative distance  from Tc and parameters (critical exponents (α , β ,(∆i)) and amplitudes, (Bsi), 

(Bdi)).  

A routine and some criterions are elaborated for the task: to determine parameters of Y 

with the help of nl,ng,T – data. The scaling function ψ l,g.is used to analyze Y. With the help of the 

routine numerical parameters of nl� � and ng� � are calculated. They represent reliable 

experimental points in a region from 300 K up to Tc. The relations represented reliable measured 

points including new data in limits of experimental errors and can be helpful to calculate 

densities on CC in a wide region of the critical point, 0.00003< �0.2. The relations, ρl(T),ρg(T), 

include effective values of critical exponents, α , β . A comparison has shown that there is a 



satisfy agreement the values with exponents,α , β , those are used in scaling equations, ρl(T),       

ρg(T). 
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1. Introduction  

Due to ST the properties on CC, ρl(T),ρg(T), can be represent with the help of the order 

parameter fs and the diameter of CC fd  [3,4] in some  region of Tc. 

fs=(ρl - ρg)(2ρc)
-1=Bs0τ β + Bs1τ β+∆1 + Bs2τ β+∆2,                                                 (1.1) 

fd=(ρl + ρg)(2ρc)
-1 - 1= Bd0τ 1-α

+ Bd1τ 1-α+∆1 + Bd2τ 1-α+∆2.                           (1.2) 

The first addend in (1.1) (1.2) represents the asymptotic component, the second and the 

third terms give non asymptotic components (the first and the second correction terms with 

correction exponents ∆1 and ∆2. 

Analytic equations, ρl(T),ρg(T), can be determined with the help of known (1.1,1.2) as  

ρl = (fd + fs+1) ρc ,      ρg = (fd - fs+1) ρc .                                       (1.3) 

Equations (1.1.,1.2) are named Model 1, they can approximate experimental data in a 

working interval ∆� w �� 0.15 of Tc (Tc >T >Tw, ∆ w = 1 – Tw/Tc) for different substances. RMS 

deviations, Sg,Sl, are small and no systematic deviations are realized. Our practice showed if Tw 

decreases and ∆� w > 0.1 then RMS deviations, Sg,Sl, increase and remarkable systematic errors 

appear. A combined model named Model 2 is proposed for the case in [3,4]. 

We have decided to choose an analogous form for representation of nl ,g( ) equation. 

2. Models, criterions and routines 

To represent nl,ng,T – data in ∆ w >0.1 we have taken Model 2 adopted to nl ,g( ) 

fs=(nl - ng)(2nc)
-1 = Bs0τ β + Bs1τ β+∆1 + Bs2τ β+∆2 + Bs3τ 2+ Bs4τ 3 ,          (2.1) 

fd=(nl + ng)(2nc)
-1 = Bd0τ 1-α

+ Bd1τ 1-α+∆1 + Bd2τ 1-α+∆2+ Bd3τ 2+ Bd4τ 3.            (2.2) 

Analytic equations, ρl(T),ρg(T), can be determined with the help of known (2.1,2.2) as  



ρl = (fd + fs+1) ρc ,      ρg = (fd - fs+1) ρc .                                       (2.3) 

Two regular terms in (2.1,2.2) are involved with the aim to reduce possible systematic 

deviations mentioned for Model 1 under w >0.1. Model 2 is to have the following 

characteristics: 1) it approximates nl,ng,T – data in ∆ w >0.1 with acceptable RMS deviations, 

Sg,Sl, 2) at the same time its scaling part (it can be consider as Model 1) delivers acceptable RMS 

deviations, Sg,Sl, for points in ∆ w = 0.1 when Model 1 is used to calculate deviations of ρl,ρg,T – 

data in ∆ w =0.1. In the case the regular terms play a role of correction addends: Sl(Model 1) � 

Sl(Model 2) and Sg(Model 1) � Sg(Model 2). 

An approximation quality of Model 2 is characterized by individual and RMS deviations of 

experimental (ng exp k,nl exp k) values from those calculated with equations (2.3) 

δρgk = 100 (ρg exp k - ρgk)/ ρgk ,          Sg = (Σδρgk
2 / N) 0.5,                                 

δρli = 100 (ρl exp k - ρlk)/ ρlk ,               Sl = (Σδρlk
2 / N) 0.5,                                (2.4) 

Model 2 can be considered as Y = (fs,fd,) that includes parameters, D = (ρc,Tc,α ,β ,(∆i)), 

and coefficients, C = ((Bsi),(Bdi)). Values of C are to be determined by an approximation of the 

input data set (Yexp k,τk). If D are considered as the parameters fixed and known (taken from 

literature sources) then Y = f(D,C,τ) is a linear function of C. In the case it is possible to calculate 

C using a weighted least-squares analysis (LSQA) and a single criterion – a minim of the 

functional Φ(C,D) 

Φ(C,D) = ∑
=

N

k 1
wk (Yexp k - f(D,C,τk))

2/N = min.             (2.5)  

Routine 1 is elaborated for C calculation and has the following steps: i) to consider D as 

the parameters fixed and to take from literature sources; ii) to form a sum of squares, Φ(C,D), for 

the input data set; iii) to calculate a realization C, that is numerical values of C, using a weighted 

least-squares analysis (LSQA) and a single criterion – a minim of Φ(C,D); iiii) to estimate a 

quality of the approximation that is to calculate individual and RMS deviations . 

Routine 1 was used and gave an opportunity to examine a group of realizations (Y = 

f(Dj,Cj,τ), j = 1…K). Criterion (1.6) shows that Φ(C,D) Sl,g(D) are some functions of parameters 



D. If Routine 1 is used at the first time then the following numerical values appear: parameters, 

D = D1, a realization, C = C1, RMS deviations, Sl,g(D1). If one of the parameters D1 is shifted (for 

example ρc can be shifted on ρc in limits of an experimental estimation ± ρc) then Routine 1 

can be used at the second time and the second set, D2,C2,Sl,g(D2), can be got. Many numerical 

variants (realizations (Cj)) of Models 1,2 and according deviation sets (Sl,g(Dj)) were got, among 

them there were such numerical dependences as Sl,g(nc),Sl,g(Tc), Sl,g(β ) in some region of 

S
min

l
and S

min

g
. Our analyses have estimated some general features of the realisations: i) values of 

Sg and Sl did not coincide (Sl<Sg), the global minimal values were found between them (Model 2 

has given S
min

l
=0.01% and S

min

g
 = 0.005% for HFC 134a points related to ∆ w = 0.25, ii) the 

leading amplitudes, Bs0,Bd0, deviated greatly from middle calculated values, Bs0,Bd0, iii) it was 

impossible to find a variant Cj that delivered Sl = S
min

l
 and Sg = S

min

g
at once. The last 

circumstance was one of the reasons to look for an optimal Models 1,2 (Y = f(Dopt,Copt,τ)) with 

an optimal realization Copt that deliver compromise values of Sl,g(Dopt). It was admitted that the 

realization Y = f(Dopt,Copt,τ) is optimal when Y deliver RMS deviations those follow to the 

compromise criterions  

Sl(Dj) - S
min

l
 < ε1 ,            Sg(Dj)- S

min

g
 < ε2 ,                                            (2.6) 

where ε1 and ε2 – some limits.  

Our practice and analysis of realizations, (Yj), have showed that more criterions have to be 

involved for the purpose to choose an optimal variant from realizations (Yj) those satisfied 

criterions (2.6). One more property is considered in ST and involved in the work: the scaling 

function ψl,g that can be expressed in the form  

ψ l,g =| (nl,g - nc)(2ncτ β )  - 1| = |±Bs0 + Bd0τ 1 - α - β ± Bs1τ ∆1 - β + Bd1τ 1 - α +∆1 - β +... |,    (2.7) 

where the upper (plus) sign of terms corresponds to the liquid branch (l), the lower (minus) 

corresponds to the vapor branch (g) of ψ l,g. 



Investigations [3,4,5] estimated that the scaling function ψl,g can be used as an additional 

criterion. ψl,g is written in a narrow interval w � 0.01 as two terms expression that includes only 

leading addends with the asymptotic exponents  

ψ l,g � |±Bs0 + Bd0τ 1 - α - β | .                      (2.8) 

A numerical form (2.8) of ψl,g was found and analysed for several liquids (H2O,Ne,N2,HFC 

134a, HFC 143a a. o.). Due to (2.8) an optimal variant, Y = f(Dopt,Copt,τ)), is to follow to the next 

features: i) ψ l,g is symmetric to the amplitude Bs0 for liquid and vapour branches, ii) the plot of ψ 

l,g versus τ 1-α -β is liner and converge symmetrically to Bs0, iii) asymptotic Model 0 as Y = 

f(Dopr,C = Bs0,Bd0,τ) can be built, optimal Model 0 is to have a satisfied agreement with 

experimental points related to w � 0.01, RMS deviations, Sl,Sg, are close to criterions (2.6) in the 

case. An illustration of ψ l,g as a function of τ 1-α -β is given in Fig. 1,2. Experimental values of    

ψ l,g are shown as well as values determined with the help of Models 0,1,2 for HFC 134a. Two 

methods of parameters D chose were examined for the task. Due to the first one D components 

are taken as theoretical or experimental values and not varied during a treaty of the input data 

set. For example the exponents are taken in [2] as theoretical data β=0.325, α =0.1085 and ∆ = 

0.5 for the densities equations, ρl(T),ρg(T). We have used the way for (∆i) determination and 

chosen ∆1 = ∆ = 0.5 and ∆2 = 2∆ as theoretical values. The second method [3 - 6] considers D = 

(ρc,Tc,α , β ,Bs0,Bd0) as fixed parameters for the densities equations, ρl(T),ρg(T); D is known in a 

region of possible deviations (± �) and the method let us i) shift D in the limits (± �) 

corresponding to some criterions, ii) examine a group (Dj) and choose an optimal variant. We 

underline that leading amplitudes, Bs0,Bd0, are also included in D and they do not take part in 

LSQA when amplitudes C are determined. This schema has been accepted in the work. 

The middle value of D components and a region of possible deviation (± ρc,± Tc,± β a.o.) 

were found among parameters of realization, (Yj), calculated during the investigation. The start 

values were chosen: α =0.1085 and β=0.325, Tc = 374.107 ± 0.02 K [1], nc = 1.08990 [1]. The 



characteristics were combined in a group D1 = (nc,Tc,α ,β , ∆,Bs0, Bd 0) as a start data. The value 

β=0.348 ± 0.001 was reported by Yata [1] as an effective exponent got from ρl,ρg,T – data. The 

region was also used in Routine 2. 

Routine 2 was elaborated using criterions (2.6,2.8). It consisted of several steps: i) to take 

D1 as start fixed parameters, ii) to calculate the realization C1 employing weighted LSQA, iii) to 

determine the criterions (Sl,Sg,ψ l,g) and to analyse them; if the analysis showed that criterions 

(Sl,Sg,ψ l,g) satisfied conditions (2.3,2.4) then the routine was to finish. On opposite site, a new 

fixed parameter (for example, it was nc) was to be chosen (nc was shifted on 0.1� nc), D2 was 

formed and treaty was continued (steps ii,iii) to get next realisation C2. There is an illustration in 

Fig. 1 of a dependence, Sl (nc), when nc is shifted step by step in a region, nc, of S
min

l
. Routine 2 

builds Models 1,2 for HFC 134a when nc increases from 1.089795 to 1.089805 with the step 

0.000001 and the value of Sl changes in the interval 0.021…0.15 %. The dependence shows: if 

the limit is taken as ε2 �� ������ ��	
� nc lies in the interval 1.089801 + 0.000001. A similar 

dependence is found for Sg(nc) and ε2 ������������		
����	��	��. 

Routine 2 let us get Models 1,2 those had effective parameters, Dopt,Copt, and were agree 

with conditions (2.3,2.4). The routine was used to build Model 1,2 using nl,ng,T –points of HFC 

134a and HFC 143a in w ���������	���������ε1,ε2, are determined as ε1 = ε2 ������������	������

parameters of Model 2 are placed in tables 1,2. Model 2 was fitted to the input data set with 

acceptable accuracy in the gas and liquid phases. Values of ψ l,g calculated with the parameters 

(table 1) are placed in Fig. 2,3. There are values determined with the help of Models 0,1 in Fig. 

2. The models have used the parameters (Table 1) and represent scaling terms of a combined 

equation (2.1,2,2). In Fig. 3 there are values determined using Model 2 with the parameters 

(Table 1). Experimental values of ψ l,g are shown too.  



Following approximation characteristics, Sl,Sg,S
min

l
,S

min

g
, were got: for Model 1 Sl 

=0.017%, Sg = 0.013%, S
min

l
 = 0.021 %, S

min

g
= 0.014 %; for Model 2 Sl =0.019, Sg = 0.021%, 

S
min

l
= 0.012 %, S

min

g
= 0.013 %.  

Table 1. Parameters of Model 2 for HFC 134a. 

nc  Tc /K α β ∆ 

1.089801 374.105 0.1509 0.34942 0.5 

Bs0 Bs1 Bs2 Bs3 Bs4 

0.1757 0.003521 -0.0369 -0.030079 0.095459 

Bd0 Bd1 Bd2  Bd3 Bd4 

0.06605 0.011038 0.030092 -0.000207 -0.004037 

 

Table 2. Parameters of Model 2 for HFC 143a. 

 

nc  Tc /K α β ∆ 

1.09125 345.815 0.22 0.3515 0.5 

Bs0 Bs1 Bs2 Bs3 Bs4 

0.1761 0.006851 -0.066169 0.053325 0.148388 

Bd0 Bd1 Bd2  Bd3 Bd4 

0.0066 0.250177 -0.326997 0.0673 0.131136 

 

There is an illustration in Fig. 4 of a dependence, Sl (Tc), for Modes 1,2 when Tc is shifted 

step by step in the interval ∆Tc = 374.10…374.12 K including the point with S
min

l
. Routine 2 let 

us use the step 0.0005 …0.001 K and estimate that Sl changes in the interval 0.021…0.35 %. 

(Model 1) and 0.012…0.033 % (Model 2). The dependence shows: if the limit is taken as ε2 ��

0.01% then i) Tc can be chosen as Tc = 374.105+ 0.001 K and ii) Models 1,2 will have the 

following criterions of approximation: Sl  = 0.021…0.031 for Model 1, Sl  = 0.05…0.021% for 

Model 2. A comparison shows that Models 1,2 have similar RMS deviations at Tc = 374.105 K.  



The equalities, Sl(Model 1) ��Sl(Model 2), Sg(Model 1) ��Sg(Model 2), mean that the scaling part 

plays the leading role and the influence of the regular part is small in optimal variant of Model 2.  

4. Conclusion 

The analysis of realizations, an optimal variant of Model 2 and results of a comparison 

with the data [1,2] allows us to make an output that the structure of Model 2 can be useful to 

approximate experimental data on a line of the phase equilibrium including a broad 

neighborhood of the critical point. Numerical variants of nl(T),ng(T) for HFC134a represent 

experimental data in the region, 0.00003< �0.2, with satisfy RMS deviations: for Model 1 Sl 

=0.017%, Sg = 0.013%; for Model 2 Sl =0.019%, Sg = 0.021%. The Models can be used to 

determine accurate ρl,ρgT – data including asymptotic region of the critical point where 

traditional methods have a low accuracy. Effective values of critical characteristics, 

nc,Tc,α , β ,Bs0,Bd 0, are interesting data for problems of ST. 
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List of symbols 

T = temperature 

P = pressure 

ρ  = density 

Ps = saturated pressure 

g,l,c = indexes to mark the vapor and liquid phases on CC and a value in the critical point 

α , β ,(∆i) = critical exponents 

 = 1 - T/Tc = relative distance of temperature from Tc, 

(Bsi), (Bdi), (Bpi)  = amplitudes 

δρg k,δρl k = relative deviations of the vapour and liquid densities in k – point 

ρg exp k,ρl exp k = experimental values of the the densities 

ρg k,ρl k = values of the vapour and liquid densities calculated with (1.4) 



N = the number of points in the input data set 

Sg,Sl = relative RMS deviations of vapour and liquid densities.  

wk = weight coefficient for k – point 
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Fig. 1. The scaling functions ψ l,g of HFC 134a.  
Values are determined from 1) the experimental data, 2) Models 0,1; 
b0 – leading amplitude Bs0; relative temperature – τ 1-α -β = (1 - T/Tc)
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Fig. 3. The influence of nc on the criterions Sl for Model 1 and Model 2 of HFC 134a 
 
Fig. 4. The influence of Tc [K] on the criterions Sl for Model 1 and Model 2 of HFC 134a 
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Fig. 4. The influence of Tc on the criterions Sl for Model 1 and Model 2 

 
 

 
 




